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Abstract. We study a single, motionless three-dimensional droplet growing by adsorption of diffusing
monomers on a 2D substrate. The diffusing monomers are adsorbed at the aggregate perimeter of the
droplet with different boundary conditions. Models with both an adsorption boundary condition and
a radiation boundary condition, as well as a phenomenological model, are considered and solved in a
quasistatic approximation. The latter two models allow particle detachment. In the short time limit, the
droplet radius grows as a power of the time with exponents of 1/4, 1/2 and 3/4 for the models with
adsorption, radiation and phenomenological boundary conditions, respectively. In the long time limit a
universal growth rate as [t/ ln(t)]1/3 is observed for the radius of the droplet for all models independent
of the boundary conditions. This asymptotic behaviour was obtained by Krapivsky [15] where a similarity
variable approach was used to treat the growth of a droplet with an adsorption boundary condition based
on a quasistatic approximation. Another boundary condition with a constant flux of monomers at the
aggregate perimeter is also examined. The results exhibit a power law growth rate with an exponent of
1/3 for all times.

PACS. 64.70.Fx Liquid-vapor transitions – 64.60.Qb Nucleation – 68.45.Da Adsorption and desorption
kinetics; evaporation and condensation

1 Introduction

There has been considerable interest in diffusive-growth
processes including growth phenomena for a droplet on
a substrate. This growth phenomena in the case where
diffusion and coalescence play the major roles are com-
mon in many areas of science and technology [1,2]. In
this process, each droplet diffuses and grows individu-
ally and coalesces with contacting droplets. The kinetics
of these phenomenon have been studied experimentally
and theoretically [3–29]. Some models have been devel-
oped to explain the kinetics of these processes. One such
model [6,12,15] consists of a single, motionless three di-
mensional droplet formed by diffusion and adsorption of
non-coalescing monomers on a 2D substrate. In the model
it is assumed that the diffusing monomers coalesce only
with large immobile growing droplet and not with each
other. In [6,12] a static approximation was used to solve
the diffusion equation and an approximate description of
the long time behaviour was obtained. The static approach
predicted an asymptotic power law growth rate for the ra-
dius of the droplet. Because of the growth of the droplet,
the present problem involves a moving boundary. Moving
boundary problems in the context of the diffusion equa-
tion are referred to as Stefan problems [30–32]. The only
exact solutions for these problems have been found using
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a similarity variable method, see for instance, [30–34] and
references therein. Using this method for a droplet of di-
mensionality d growing on a substrate of the same dimen-
sionality, an exact scaling solution can be found. In [33]
such a solution in one dimension has been derived which
can be generalised to a higher dimension. However, the
problem of a 3D droplet growing on a 2D substrate, may
be treated by approximate methods. A simple treatment
based on a quasistatic approximation has been presented
in [15]. A similarity variable approach was used to solve
the Stefan problem with moving boundary [15]. The re-
sults predicted that the radius of the droplet increases
as [t/ ln(t)]1/3 asymptotically. The asymptotic growth law
predicted by the static approach differs from the qua-
sistatic answer by a slowly varying logarithmic factor.
In all the models in [6,12,15] an adsorption boundary
condition at the aggregate perimeter of the droplet, was
considered.

In [37] a generalisation of Smoluchowski model [35,36]
for diffusional growth of colloids, was presented.
Smoluchowski [35] considered the process of diffusional
capture of particles assuming the growing aggregate is
modeled as a sphere. He then solved the diffusion equa-
tion with an absorbing boundary condition at the aggre-
gate surface of the sphere. In [37] two other approaches
were considered, a phenomenological model for the bound-
ary condition and a radiation boundary condition. Both



140 The European Physical Journal B

approaches allowed for incorporation of particle detach-
ment in Smoluchowski model. Explicit expressions for the
concentration and intake rate of particles were given in
the long time limit [37].

In this paper we consider a single, motionless three-
dimensional droplet growing by adsorption of diffusing
monomers on a two-dimensional substrate. The diffusing
non-coalescing monomers are adsorbed at the aggregate
perimeter of the droplet with different boundary condi-
tions. Models with different boundary conditions for the
concentration of monomers are considered and solved in a
quasistatic approximation. For each model, the diffusion
equation is solved exactly, subject to a fixed boundary.
Using mass conservation law at the aggregate perimeter
of the growing droplet, we then obtain an expression for
the growth rate of the moving boundary. Explicit asymp-
totic solutions in the both short and long time limits are
given for the concentration, total flux of monomers at the
perimeter of the growing droplet and for the growth rate
of the droplet radius. This paper is organised as follows.
In Section 2, a model with an adsorption boundary con-
dition is examined. In Sections 3 and 4 we consider the
two approaches which were introduced in [37] to allow
for particle detachment. A phenomenological model and
a model with a radiation boundary condition are consid-
ered in Sections 3 and 4, respectively. Another boundary
condition which assumes a constant flux of monomers at
the aggregate perimeter of the droplet, is also introduced
in Section 5. Finally, in Section 6 we compare the results
of different approaches and summarise our conclusions.

2 Growth equations with adsorption boundary
condition

Consider an immobile three-dimensional droplet which
is initially surrounded by monodisperse droplets. The
droplet lies on a two-dimensional plane substrate on which
the monomers diffuse. Monomers have the volume V and
diffuse with the diffusion constant D. Then, the concen-
tration of monomers at point r and at time t, c(r, t), is
described by the diffusion equation

∂c(r, t)
∂t

= D
1
r

∂

∂r

(
r
∂c(r, t)
∂r

)
(1)

for r ≥ R, where R(t) is the radius of the immobile grow-
ing droplet. The initial conditions are given by

c(r, t = 0) = c0, (2)

which is the initial, uniform, monomer concentration and

R(t = 0) = 0, (3)

which shows that the droplet is not present at the begin-
ning of the process. We consider an adsorption boundary
condition at the perimeter of the droplet

c(r = R, t > 0) = 0 (4)

and assume that at infinity the concentration of the
monomers is finite and equal to c0. Concentration gra-
dients in the neighborhood of the droplet create a flux
of monomers on the two-dimensional substrate. This flux
feeds the growth of the droplet. Therefore, the rate of in-
crease of the droplet volume is related to the total flux
of monomers at the perimeter of the droplet by mass
conservation,

Φ(t) = λR2 dR
dt
, (5)

where the total flux

Φ(t) = V

[
2πRD

∂c

∂r

∣∣∣∣
R

]
(6)

corresponds to the monomers incorporated at the perime-
ter of the droplet. In (5) λ is a dimensionless factor related
to the contact angle of the droplet.

In order to solve (1) with (2-4), we introduce the
Laplace transform of the concentration,

c̄(r, s) =
∫ ∞

0

dt e−stc(r, t), (7)

which satisfies the equation

D
1
r

∂

∂r

(
r
∂c̄

∂r

)
= s c̄− c0. (8)

Here we have already used the initial condition (2). The
general solution of this equation is given by

c̄(r, s) =
c0
s

+A(s)K0(qr) +B(s)I0(qr), (9)

where q =
√
s/D, and K0 and I0 are modified Bessel

functions of order zero. To have a finite solution as
r → ∞, we set B(s) = 0. The boundary condition (4)
in the Laplace transform version becomes

c̄(r = R, s) = 0. (10)

Using (10) the transformed concentration and its gradient
normal to the droplet perimeter, yield

c̄(r, s) =
c0
s

[
1− K0(qr)

K0(qR)

]
, (11)

∂c̄(r, s)
∂r

=
c0

(Ds)1/2

K1(qr)
K0(qR)

· (12)

To find time dependent concentration and its radial
gradient, we use the Inversion theorem for (11, 12).
Both (11, 12) have a branch point at s = 0, so in the In-
version formula we use a contour which does not contain
any zeros of s and K0(qR). Consequently, the time depen-
dent concentration and also the total flux at the droplet
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perimeter from (6), are given by

c(r, t) =
2c0
π

∫ ∞
0

e−Du
2t

×
[
J0(Ru)N0(ru)− J0(ru)N0(Ru)

J2
0 (Ru) +N2

0 (Ru)

]
du
u
, (13)

Φ(t) =
8 c0DV
π

∫ ∞
0

e−Du
2t 1

[J2
0 (Ru) +N2

0 (Ru)]
du
u
,

(14)

where J0 and N0 are Bessel functions of order zero. Using
(5, 14) a differential equation for the growth rate of the
droplet radius can be obtained

λR2 dR
dt

=
8c0DV
π

∫ ∞
0

e−Du
2t 1

[J2
0 (Ru) +N2

0 (Ru)]
du
u
,

(15)

which gives a general solution for R as a function of the
time. We are interested in the short and long time solu-
tions for the concentration, the total flux of monomers at
the perimeter of the droplet and the growth rate of the
droplet radius.

For small values of the time, it is shown that the be-
haviours of c(r, t) and ∂c(r, t)/∂r may be determined from
the behaviors of c̄(r, s) and ∂c̄(r, s)/∂r, respectively, for
large values of the transformed parameter s. Then, we
expand the Bessel functions occurring in (11, 12) suppos-
ing s to be large. The final result for the concentration of
monomers, keeping the leading time dependent term, is

c(r, t) ' c0

[
1−

(
R

r

)1/2

Erfc
(
r −R
2
√
Dt

)]
· (16)

The total flux at the droplet perimeter and the growth
rate of the droplet radius also in this limit using (6) and
(5), respectively, are given by

Φ(t) ' 2 c0V R
√
πD t−1/2, (17)

R(t) '
(

8 c0V
√
πD

λ

)1/2

t1/4. (18)

We see that in the short time limit, R grows as a power
of the time with an exponent of 1/4.

For large values of the time, the behaviours of c(r, t)
and ∂c(r, t)/∂r may be determined from the bahaviours
of c̄(r, t) and ∂c̄(r, s)/∂r, respectively, for small values of
the transform parameter s. We then expand the Bessel
functions occurring in (11, 12) supposing s to be small.
Keeping the leading time dependence term, the concen-
tration of monomers yields

c(r, t) ' 2 c0
ln
( r
R

)
ln
(

4Dt
σ2R2

) , (19)

where σ = eγ = 1.78107..., where γ = 0.57722... is Euler’s
constant. The total flux at the droplet perimeter and the
growth rate of the droplet radius also in this limit using
(6) and (5), respectively are given by

Φ(t) ' 4πc0DV
[
ln
(

4Dt
σ2R2

)]−1

, (20)

R(t) ' A
[

τ

ln(τ)

]1/3

, (21)

where A =
(
9πV σ2/λ

)1/3 and τ = 4c0Dt/σ2 is the dimen-
sionless time. Up to a constant, these are the same results
which were obtained by Krapvisky based on a quasistatic
approximation using a similarity variable approach [15].

3 Phenomenological rate equation model

One can consider various modification of the initial and
boundary conditions (2, 4). Here we improve the model
and incorporate effects other than the irreversible adsorp-
tion at r = R expressed by (4), reference [37]. In this
section we consider a phenomenological modification of
the boundary condition (4) to allow for detachment. This
was introduced in [37] where the relation

∂c(r, t)
∂t

= −mc(r, t) + k (22)

at r = R was replaced for (4). Here it is assumed that the
diffusing monomers that reach the perimeter of the droplet
are incorporated in the aggregate structure at the rate
mc proportional to their concentration at R. The second
term in (22) corresponds to detachment and is assumed
that only depends on the internal processes, so there is no
dependence on the external diffuser concentration [37].

To solve (1) with (2, 3) and (22), we go through steps
similar to Section 2 and only emphasize the final expres-
sions. In the Laplace transform version, the boundary con-
dition becomes

(s+m) c̄(r, s) =
k

s
+ c0 (23)

at r = R. The concentration and the radial gradient of
the concentration in this version become

c̄(r, s) =
c0
s
− mc0 − k
s(s+m)

K0(qr)
K0(qR)

, (24)

∂c̄(r, s)
∂r

=
mc0 − k
(Ds)1/2

1
(s+m)

K1(qr)
K0(qR)

· (25)

Now we look for the solutions in the short and long time
limits.

For small values of the time, we use the asymptotic ex-
pansions of the Bessel functions in (24, 25) for large values
of s and ignore m in comparison to s in the term (s+m).
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Then, the concentration, the total flux at the droplet
perimeter and the growth rate of the droplet radius in this
limit, keeping only the leading time-dependent terms, are
given by

c(r, t) ' c0 + 4mt
(
c0 −

k

m

)(
R

r

)1/2

Erfc
(
r −R
2
√
Dt

)
,

(26)

Φ(t) ' 4mVR
√
πD

(
c0 −

k

m

)
t1/2, (27)

R(t) '
[

16mV
3λ

√
πD

(
c0 −

k

m

)]1/2

t3/4. (28)

We see that in a phenomenological model, R grows as
a power of the time with an exponent of 3/4 in the
short time limit. In the expressions (26-28), in compar-
ison with (16-18) in the previous section, there is a term
as (c0 − k/m) which shows a reduction of the rate due to
detachment, proportional to the ratio k/m.

For large values of the time, we use the expansions of
the Bessel functions in (24, 25) supposing s to be small and
ignore s in comparison with m in the term (s+m). Then,
the concentration, the total flux at the droplet perimeter
and the growth rate of the droplet radius, keeping only
the leading time dependent terms, yield

c(r, t) ' k

m
+ 2

(
c0 −

k

m

) ln
( r
R

)
ln
(

4Dt
σ2R2

) , (29)

Φ(t) ' 4πDV
(
c0 −

k

m

)[
ln
(

4Dt
σ2R2

)]−1

, (30)

R(t) ' A
[

τ

ln(τ)

]1/3

, (31)

where A = (9πV σ2/λ)1/3 and τ = 4Dt(c0 − k/m)/σ2.
These asymptotic expressions are quite similar to the long
time forms (19-21) in Section 2. The only change is the
reduction of the rate due to the detachment, proportional
to the ratio k/m.

For a fast enough detachment, the total fluxes of the
monomers at the boundary in the both short and long
time limits (27, 30) can actually become negative. In this
case, the flux does not feed the growth of the droplet and
the droplet volume does not increase anymore. Therefore,
the mass conservation (5) does not hold and the growth
laws (28, 31) are not valid anymore. For a case in which
c0 = k/m, the system reaches a stationary state and there-
fore the total rate and the total flux of the monomers at
the droplet perimeter, become zero for all times. Conse-
quently, there is no growth for the droplet and the con-
centration of the monomers is equal to the initial con-
centration, c0, for all times. These results can be obtained
from the both short and long time expressions (26-28) and
(29-31), respectively.

4 Radiation boundary condition

In this section we consider another modification of the
boundary condition (4) and replace it with a radiation
boundary condition

α
∂c(r, t)
∂r

+ β = c(r, t) (32)

at r = R, reference [37]. Here it is assumed that the con-
centration is proportional to its derivative, with an addi-
tional constant β. Again we go through steps similar to
the Section 2 and only emphasize the final expressions.
In the Laplace transform version, the boundary condition
becomes

α
∂c̄(r, s)
∂r

+
β

s
= c̄(r, s) (33)

at r = R. The concentration and its radial gradient in this
version become

c̄(r, s) =
c0
s
− (c0 − β)

s

K0(qr)
K0(qR) + αqK1(qR)

, (34)

∂c̄(r, s)
∂r

=
(c0 − β)
(Ds)1/2

K1(qr)
K0(qR) + αqK1(qR)

· (35)

We concentrate our attention to the solutions in the short
and long time limits.

For small values of the time, we use the asymptotic
expansions of the Bessel functions in (34, 35) to get the
leading time dependent terms for the concentration, the
total flux and the droplet growth rate

c(r, t) ' c0 −
2i
α

(c0 − β)
(
DRt

r

)1/2

Erfc
(
r −R
2
√
Dt

)
,

(36)

Φ(t) ' 2πRDV
α

(c0 − β), (37)

R(t) '
[

4πDV
αλ

(c0 − β)
]1/2

t1/2. (38)

The term (c0−β) in these expressions shows a reduction of
the rate due to the detachment, proportional to the ratio
β. We see that in the short time limit, the total flux at
the droplet perimeter is time-independent and R grows as
a power law with an exponent equal to 1/2.

For large values of the time, we expand the Bessel func-
tions in (34, 35) supposing s to be small. Consequently,
the asymptotic expressions for the concentration, the total
flux and the droplet growth rate, yield

c(r, t) ' β + 2(c0 − β)
ln
( r
R

)
ln
(

4Dt
σ2R2

) , (39)

Φ(t) ' 4πDV (c0 − β)
[
ln
(

4Dt
σ2R2

)]−1

· (40)

R(t) ' A
[

τ

ln(τ)

]1/3

, (41)
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where A = (9πV σ2/λ)1/3 and τ = 4Dt(c0 − β)/σ2. These
long time expressions have the same forms as (29-31)
provided we identify

β =
k

m
· (42)

For a fast enough detachment, analogue to the Section 3,
the total fluxes of the monomers at the boundary (37, 40)
can become negative. In this case, the growth laws (38, 41)
do not hold anymore. For a case in which c0 = β, analogue
to the Section 3, the system reaches a stationary state
and therefore the total flux and the droplet growth rate
become zero. The concentration also does not change with
the time and is equal to the initial one. These can be seen
from the both short and long time results (36-38) and
(39-41), respectively.

5 Constant flux boundary condition

In this section we impose a condition on the flux of the
monomers assuming that the total flux of monomers at
the droplet perimeter is constant. Therefore, we replace
(4) with

Φ(t) = Q (43)

at r = R, where Φ(t) is given by (6) and Q is a constant.
The analogue to the previous sections, in the Laplace
transform version, the boundary condition becomes

2πRDV
∂c̄(r, s)
∂r

=
Q

s
(44)

at r = R. The concentration and its radial gradient in this
version are

c̄(r, s) =
c0
s
− Q

2πRVD1/2

K0(qr)
s3/2K1(qR)

(45)

and

∂c̄(r, s)
∂r

=
Q

2πRDV
K1(qr)
sK1(qR)

· (46)

Appropriate expansions of the Bessel functions in (45)
give us the limiting forms of the concentrations. For small
values of the time it yields

c(r, t) ' c0 −
iQ
πV

(
t

DRr

)1/2

Erfc
(
r −R
2
√
Dt

)
(47)

and for large values of the time it gives

c(r, t) ' c0 −
Q

4πDV
ln
(

4Dt
σr2

)
· (48)

The trivial solution for the droplet growth rate using
(5,43) is

R(t) =
(

3Q
λ

)1/3

t1/3 (49)

for all times.

6 Conclusions

We studied the growth of a single, motionless, three-
dimensional droplet that accommodates monomers at its
perimeter on a 2D substrate. The noncoalescing monomers
diffuse and are adsorbed at the aggregate perimeter of
the droplet with different boundary conditions. Models
with adsorption and radiation boundary conditions, and
a phenomenological model for the boundary condition,
were considered and solved in a quasistatic approxima-
tion. In a model with adsorption boundary condition, the
droplet forms an absorber and the concentration of the
monomers at its perimeter is zero. In a phenomenologi-
cal model, we assumed that the diffusing monomers that
reach the perimeter of the droplet, are incorporated in
the aggregate structure at a rate proportional to their
concentration at the boundary. We also added another
term which corresponds to detachment. In a model with
radiation boundary condition we assumed that the con-
centration is proportional to its derivative with an extra
detachment term. For each model, we solved exactly the
diffusion equation for the concentration of the monomers,
subject to a fixed boundary. Then, using a mass conser-
vation law at the perimeter of the droplet, we found an
expression for the growth rate of the moving boundary.
Models were subjected to an initial, uniform concentra-
tion of monomers. Asymptotic results for the concentra-
tion, the total flux of monomers at the boundary and the
growth rate of the droplet radius, were obtained in both
short and long time limits. The results revealed that in
both phenomenological and radiation models, in compari-
son with adsorption model, there is a reduction of the rate
due to the detachment. The rate can become negative if
the detachment is fast enough. In this case, the total flux
of the monomers at the perimeter of the droplet become
negative. Therefore, the flux does not feed the growth of
the droplet volume and the droplet growth laws obtained
in the models, are not valid anymore. For a value of the
detachment for which the total rate and therefore the to-
tal flux become zero, the system reaches a stationary state
and there is no growth for the droplet anymore. The same
reduction of the rate was obtained in [37] where incorpo-
ration of particle detachment in Smoluchowski model of
colloidal growth, was considered.

The results in the short time limit predicted that
the radius of the droplet grows as a power of the
time with different exponents for different boundary con-
ditions. The exponents of the power laws were 1/4,
1/2 and 3/4, respectively, for the models with adsorp-
tion, radiation and phenomenological boundary condi-
tions. We see that the growth rate is the slowest for
the adsorption boundary condition and is the fastest for
the phenomenological model. This is because, as was
said before, in the phenomenological model the diffus-
ing monomers at the perimeter of the droplet are in-
corporated in the aggregate structure of the droplet.
The total flux of the monomers at the droplet perime-
ter is also power law with exponents of −1/2 and
1/2 for the adsorption and phenomenological model, re-
spectively, and is a constant for the radiation model.
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Again the flux is maximum for the phenomenological
model and is minimum for the adsorption model.

In the long time limit, the growth law for the radius of
the droplet was the same for all boundary conditions. Also
the concentration and the total flux had the same time
dependency in all models. The only change, as we said
before, was the reduction of the rate due to the detach-
ment in the both phenomenological and radiation models
in comparison with adsorption model. Asymptotic results
for large values of the time exhibited that the radius of
the droplet increases as [t/ ln(t)]1/3 in all models. This
was obtained by Krapivsky [15] where a similarity vari-
able approach was used to treat the growth of a droplet
with an adsorption boundary condition based on a qua-
sistatic approximation.

We saw that the time dependency of the results was
the same for all the models in the long time limit and
was different for different models in the short time limit.
This suggests that initially the flux of the monomers at
the boundary and therefore the droplet growth rate, are
affected by the condition at the boundary. But in the long
time limit, the system reaches a stable state and the initial
effects can be ignored, therefore all the models give the
same results. This suggests that a rate as [t/ ln(t)]1/3 is
a universal asymptotic growth law for the radius of the
droplet independent of the boundary conditions.

In the both models with phenomenological and radi-
ation boundary conditions, similar to the results in [37],
the value of the concentration at r = R for large times,
see (29) and (39), is exactly equal to β = k/m, indepen-
dent of R. This suggests that as far as large R and large
time behaviours are concerned, we can use the boundary
condition

c = β =
k

m
(50)

at r = R, instead of phenomenological and radiation
boundary conditions. Indeed, the value of the concentra-
tion at r = R is the only parameter needed to calculate
the modifications of the asymptotic behaviours due to the
detachment. With this boundary condition for all times,
the asymptotic results (29–31) and (39–41) become ex-
act. Therefore, a constant concentration of the monomers
at r = R for all times, gives an exact growth rate as
[t/ ln(t)]1/3 .

We also examined another model with a constant flux
of monomers at r = R. The results showed that the ra-
dius of the droplet grows as t1/3 for all times. Thus, the
growth laws predicted by a constant concentration and by
a constant flux at the boundary, differ from each other by
a slowly varying logarithmic factor.
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